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Energy spectrum in the inertial and dissipation ranges of two-dimensional steady turbulence

Toshiyuki Gotoh
Department of System Engineering, Nagoya Institute of Technology, Showa-ku, 466, Nagoya, Japan

~Received 27 March 1997; revised manuscript received 27 October 1997!

The energy spectrum in the inertial and dissipation ranges in two-dimensional steady turbulence is examined
theoretically and by high resolution direct numerical simulations~DNS! up to N540962. A theoretical spec-
trum smoothly joining the two ranges is derived using the Ka´rmán-Howarth-type equation. In the inertial range
we obtain an asymptotic form of the energy spectrum asE(k)5Ch2/3k23(k/kd)2d@ ln(k/kI)#

2(22d)/(62d) with
small d. It is found from the DNS thatd decreases slowly with the microscale Reynolds number and the
constantC is of the order of unity but increases with the microscale Reynolds number. In the far dissipation
range, we deriveE(k)}k2(31d)/2e2a2(k/kd), which agrees with the DNS results. The slopea2 depends explic-
itly on the microscale Reynolds number and agrees with the DNS values. Universality of the spectrum in the
two ranges is also discussed.@S1063-651X~98!10703-1#

PACS number~s!: 47.27.Gs, 47.27.Jv, 47.27.Ak
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I. INTRODUCTION

The energy spectrum is the quantity of central interes
the study of turbulence. Recent high performance compu
enable us to simulate two-dimensional turbulence with v
high resolution@1–12#. Most of the studies using direct nu
merical simulation~DNS! have been concerned with deca
ing turbulence, in which long lived coherent vortices eme
and are strongly dependent on initial conditions. In this ca
one is unlikely to see universality in the satistics of the t
bulence. On the other hand, in the case of steady t
dimensional turbulence excited by pumping of vorticity wi
a macroscale 1/kI , it is commonly seen that irrespective o
forcing mechanisms, self-similar, very thin vortex layers d
velop in between vortices having the forcing scale. The
ertial range spectrum predicted by theory@15–17# is of the
form of E(k)}k23 or log-corrected one,

E`~k!}h2/3k23@ ln~k/kI !#
21/3, ~1!

by Kraichnan @18#, where h2/3 is the average rate of th
enstrophy dissipation. The energy spectrum in the enstro
cascading range by the DNS has been observed to
k2(31d) with 0,d,1 for normal viscosity@3,10–12# and to
tend to bek23@ ln(k/kI)#

21/3 for hyperviscosity@10#.
It still is an open question what the form of the ener

spectrum is in the inertial-to-far dissipation ranges at la
but finite Reynolds numbers. What we need to know is
statistics of two-dimensional turbulence with normal visco
ity, and the energy spectrum is fundamental. Most high re
lution DNS’s use hyperviscosity in order to obtain wid
inertial range than in the case of normal viscosity. Howev
using hyperviscosity changes completely the statistics of
scales of motion in the range of inertial to dissipation, a
would affect the higher order moments, which may not
independent of the viscosity, as shown in recent studies
passive scalar convected by a random velocity field@13,14#.

For finite Reynolds number, as we see in the latter s
tions, the spectrum where the inerial effect is dominan
approximately algebraic, while for infinite Reynolds numb
it is of log-corrected form, Eq.~1!. It is not known how the
571063-651X/98/57~3!/2984~8!/$15.00
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former spectrum approaches the latter in the asympt
limit. Also, less attention has been paid to the form of t
spectrum in the dissipation range. For decaying turbulen
Tatsumi and Yanase@25# studied an analytical form of the
spectrum in this range using the Modified Zero-4th theo
The form is

E~k!}k5/2exp@2a2~k/kd!#, ~2!

a2~t!5bt1/2@ ln~RLt!#21/6, ~3!

whereb is a constant of the order of unity,RL5u0 /nkI is the
macroscale Reynolds, number andt5u0kI t is nondimen-
sional time. But no studies have been done for steady tu
lence.

In this paper we present a simple analysis of the ene
spectrum that smoothly joins the inertial and dissipat
ranges for normal viscosity, and compare with DNS resu
of steady turbulences of high resolution up toN540962

@11,12#.

II. ANALYSIS OF THE ENERGY SPECTRUM

The equation for the second-order moment of vortic
differenceQ2(r,t)5^„v(x1r,t)2v(x,t)…2& is given by

]Q2~r,t !

]t
1

]Q3i~r,t !

]r i
524h12n¹2Q2~r,t !, ~4!

whereh5n^(]v/]xl)
2& is the average rate of enstrophy di

sipation per unit mass,Q3i(r)5^dui(r)@dv(r)#2& and dui
5ui(x1r)2ui(x). Since for uru5r !1/kI , the turbulence
field is homogeneous, isotropic and in a quasi-steady-s
we put]Q2 /]t50 andQ3i(r)5Q3(r )r i /r whereQ3(r ) is a
nondimensional function. Substituting this expression in
Eq. ~4! and integrating with respect tor we obtain

Q3~r !522hr 12n
dQ2~r !

dr
. ~5!

In the inertial ranger @ l d5(n3/h)1/651/kd , the viscosity
term can be neglected; then Eq.~5! becomes
2984 © 1998 The American Physical Society
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57 2985ENERGY SPECTRUM IN THE INERTIAL AND . . .
Q3i~r!r i /r 522hr , ~6!

which is a two-dimensional analogue of Kolmorogov’s 4
law in three-dimensional turbulence.

When r is in the dissipation range, we must retain t
viscosity term. Multiplying Eq.~5! by r 1 /r we have the
equation projected onto a one-dimensional axis as

Q31~x!522hx12n
dQ2

dx
. ~7!

For x! l d , we can write

lim
x→0

Q31~x!

x3
52

S2

8

h

n
V1/21O~x2!, ~8!

whereS2 is the two-dimensional skewness

S2522
K ]u1

]x S ]v

]x D 2L
K S ]u1

]x D 2L 1/2K S ]v

]x D 2L ~9!

andV is the total enstrophy defined by

V5 1
2 ^v2&. ~10!

It should be noted that closure of the third order momen
made by using the two-dimensional skewnessS2, which is
the product of the velocity gradient and the vorticity gra
ent. Substituting Eq.~8! into Eq. ~7!, integrating overx and
using the Pade´ approximation we have

F~ x̃ ![2h22/3Q2~ x̃ !5 x̃ 22
S2

32
Rl

1/3x̃41O~ x̃ 6!'
a2 x̃ 2

a21 x̃ 2
,

~11!

a2532/~S2Rl
1/3! ~12!

for x̃5xkd!1, where

Rl[
V3/2

h
~13!

is the microscale Reynolds number@19#.
In the inertial range we assume tentatively that the ene

spectrum is of the form

E~k!5C8h2/3k23S k

kd
D 2d

~14!

with d>0, which meansQ2(x);h2/3xd and

F~ x̃ !; x̃ d, x̃@1. ~15!

A smooth function that matches both Eqs.~11! and~15! is

F~ x̃ !5
x̃ 2

@11~ x̃ /b!2#~22d!/2
, b25

16~22d!

S2Rl
1/3

, ~16!
s

y

where b is the scale at which the inertial and dissipati
ranges cross over. This may be compared with the formul
three-dimensional turbulence,

15

~ ē n!1/2
Q2~ x̃ !'

x̃ 2

@11~ x̃ /c!2#2/3
,

c25
8

S3

153/2

5
, S35

K S ]u

]xD 3L
K S ]u

]xD 2L 3/2 ~17!

studied by Batchelor@20#, whereS3 is the three-dimensiona
skewness,x̃5x/ l d3 and l d35(n3/ ē )1/4 is the Kolmogorov
length~for more elaborate expressions with or without inte
mittency correction, see Refs.@21,22#!.

The one-dimensional correlation function for the vortici
is given by

W1~ x̃ ![^v~x1 x̃ !v~x!&/^v2&512
1

8Rl
2/3

F~ x̃ !,

~18!

and the corresponding one-dimensional spectrum can
written as

W1~ k̃ !5
1

2pE2`

`

W1~ x̃ !e2 i k̃ x̃d x̃

5A
]2

] k̃ 2F S k̃

2b
D s

Ks~b k̃ !G ,

A5
b22d

8p1/2G~s11/2!Rl
2/3

, k̃5kld , s5
12d

2
,

~19!

whereKm(z) is the modified Bessel function of the orderm.
The energy spectrumE(k), then, is given by@23#

Ē~ k̃ ![E~k!kd
3/V5

Ab12s

2s
k̃ 23E

k̃

`

$@b2z214s~s21!

11#Ks21~bz!22sbzKs~bz!%
zs

Az22 k̃ 2
dz.

~20!

The asymptotic form of the spectrum is

Ē~ k̃ !} k̃ 2~31d!, for k̃!1,

} k̃ 2~31d!/2e2a2 k̃, for k̃@1. ~21!

In the inertial rangeE(k) is proportional tok2(31d), while in
the dissipation range it decays exponentially at a ratea2. It
should be noted that the exponent of the prefactor in
dissipation range is2(31d)/2, half of the exponent in the
inertial range. This can be compared with the results,E(k)
}k23 in the inertial range and}k3exp@2a2(k/kd)# in the dis-
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2986 57TOSHIYUKI GOTOH
sipation range by the statistical theories of turbulence suc
the direct interaction approximation~DIA ! @24#, Modified
Zero-4th @25#, and Lagrangian renormalized approximati
~LRA! @26#. There, the exponent of the prefactor is 3, whi
is different from2~31d!/2 as found in Eq.~21!. The expo-
nential decay is the same.

We obtaina2 as

a25S 16~22d!

S2
D 1/2

Rl
21/6, ~22!

which may be compared to Eq.~3! for decaying turbulence
Equation~3! depends on the macroscale Reynolds numb
while Eq. ~22! depends on the microscale Reynolds num
Rl . The decay ratea2 depends explicitly onRl

21/6, which
arises from the normalization factor ofS2, whose depen-
dence onRl is very weak.

In three dimensional turbulence, on the other hand,
decay ratea3 of the energy spectrum in the dissipatio
range, where E(k)}exp@2a3(k/kd)#, is given by a3

5(16A15/S3)1/2, which has no explicit dependence onRl3d

@22,27#. If, therefore, the skewnessS3 does not depend on
Rl3d

in three dimensions~although it actually depends o

Rl3d
very weakly!, the energy spectrum in the dissipatio

range is independent ofRl3d
. The difference is due to the

fact that in three dimensions the third order moment app
ing in the Kármán-Howarth equation contains only the v
locity difference asQ3i

3D(r)5^dui(r)@du(r)#2&, while in two
dimensionsQ3i(r)5^dui(r)@dv(r)#2& contains velocity and
vorticity differences. In other words,Q3i(r) has contribu-
tions from two ranges of wave numbers, nearkI andkd . This
affects the closure of the third order moment using the sk
nessS2 in the far dissipation range, so thatRl

21/6 depen-
dency appears.

III. COMPARISON WITH THE DNS

Let us compare our results with the DNS results@11,12#.
The vorticity equation integrated using the pseudospec
method is

]v

]t
1

]~c,v!

]~x,y!
5n¹2v1n8¹22v1 f ~x,t !, ~23!

¹2c52v, ~24!

^ f ~x,t ! f ~x8,s!&5F~x2x8!d~ t2s!, ~25!

wheren8 is introduced to shut down the inverse cascade
the energy to low wave numbers, and set to be 2 fork<3
and zero otherwise. The random forcef (x,t) is Gaussian
white and its spectrum supportEF(k) is limited to the band
4<k<6 and normalized asF(0)5103Dt. The total energy
is defined by

E5
^u2&

2
5uL

2 , ~26!

where uL is the root mean square of the one-dimensio
component of the velocity vector. The integral scale and
croscale are defined by
as

r,
r

e

r-

-

al

f

l
i-

L51/kI[
uL

h1/3
, l[S nV

h D 1/2

, ~27!

respectively, and the integral-scale Reynolds number is

RL5
uLL

n
5

^u2&

2nh1/3
. ~28!

In the second equality of Eq.~28!, an estimate forh,

h;
uLV

L
, ~29!

is used. The details of numerical parameters are listed
Table I. Note that the integral-scale Reynolds numberRL is
very large while the microscale Reynolds numberRl is
moderate and varies slowly againstRL . The Reynolds num-
ber in the usual sense is given byRL andRl is introduced to
characterize the inertial effect at small scales.

Figure 1 shows the time averaged energy spectra for
Rl’s, which are multiplied byk31d in order to show the
plateau over a range of wave numbers. In that range
observed also that the enstrophy fluxP(k) was nearly con-
stant. Values ofd in Fig. 2 are determined by least square
for several choices of wave-number ranges for a givenRl .
It is found that the value ofd satisfies the upper boundd
,2/3 derived from Ho¨lder’s inequality@28# and lower than
4/7 derived by Polyakov@29#. The value ofd decreases
roughly asRl

21/3, although it is difficult to definitely deter-
mine the slope due to the fluctuations ofd.

Figure 3 shows the compensated spectrak(31d)/2 E(k) in
the dissipation range. The slope of the spectrum was de
mined by least square fit over the range of wave number
1<k/kd<4. We observe that the compensation of the pr
actork2(31d)/2 is crucial to obtain long linear portions of th

TABLE I. DNS parameters.N, resolution; kmax, maximum
wave number;n, kinematic viscosity;d, the exponent defined by
Eq. ~14!.

run1 run2 run3 run4

N 10242 20482 40962 40962

kmax 483 965 1931 1931
n 1.031024 2.031025 7.031026 3.031026

Dt 5.8631024 2.9331024 7.3231024 1.4731024

RL 2.33103 1.43104 4.13104 9.23104

Rl 23 40 59 67
^u&2/2 0.170 0.171 0.157 0.142
V 4.36 4.63 4.50 4.35
1/kI 0.660 0.729 0.744 0.733
l 3.3231022 1.9431022 1.4031022 9.7831023

kd 85.7 177 279 414
h 0.40 0.25 0.16 0.136
S2 0.700 0.723 0.730 0.673
d 0.509 0.430 0.374 0.355
a2 3.463 3.181 3.023 3.11
C 0.825 1.07 1.39 1.46
C8 0.596 0.726 0.893 0.931
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57 2987ENERGY SPECTRUM IN THE INERTIAL AND . . .
spectra in the far dissipation range. Whenk31dE(k) was
plotted againstk/kd , the curves appeared to be convex u
ward and would wrongly be read asE(k)}
exp@2a28(k/kd)

g#, g.1 as the width of the far dissipatio
range is not enough. We thus conclude that the prefacto
of the form ofk2(31d)/2 in the dissipation range.

Variation of the skewnessS2 with Rl is shown in Fig. 2
and appears to be very insensitive toRl as in the case ofS3
in three dimensions. This means that the slopea2 varies as
Rl

21/6. Figure 4 shows the comparison of the slope obser
in the DNS witha2, Eq. ~22! using the measured value ofd
of the DNS. Agreement is satisfactory, but the slope by
theory is slightly larger than the DNS values.

IV. THE LIMIT OF SMALL d

When the viscosity is sufficiently small, we expect thatd
is very small and the energy spectrum in the inertial ran
tends to Eq.~1!. However, Eq.~14! does not. It is interesting
to see how the energy spectrum approaches the log-corre
one asd vanishes. For this purpose, it is useful to brie
review the process of deriving Eq.~1!. That is, for very small
viscosity, the strain acting on the scale 1/k denoted by

FIG. 2. Variation ofd ~solid line with error bar! and skewness
~plus! with Rl . Dotted lines show the slopes 1/3 and 1/6.

FIG. 1. Scaled energy spectra,k31dE(k)/h2/3 in the inertial
range. Solid line,Rl567; dashed line,Rl559; dotted line,Rl

540; fine dotted line,Rl523.
-

is

d

e

e

ted

Vk5vk
25E

kI

k

p2E~p!dp ~30!

must be finite and the logarithm of the wave-number ra
k/kI comes from the integral ofVk . In the inertial range, the
enstrophy transfer rate

L~k!;vkk
3E~k! ~31!

is independent of the wave number and equal toh, so that
the exponent21/3 of Eq.~1! is obtained.

When Eq.~14! is substituted into Eq.~30!, the width of
the wave number range contributing toVk increases with
decreasingd and the integral is asymptotically close
ln(k/kI). It then follows thatE(k) must contain a factor of
ln(k/kI) for L(k) to be independent of the wave numbe
Now we assume that the energy spectrum in the iner
range is of the form

E~k!5Ch2/3k23S k

kd
D 2dF lnS k

kI
D G2b

, ~32!

where b is assumed to be a function ofd. When this is
substituted into Eqs.~30! and ~31!, we obtain

FIG. 3. Scaled energy spectrak(31d)/2E(k)/h2/3 in the dissipa-
tion range. Solid line,Rl567; dashed line,Rl559; dotted line,
Rl540; fine dotted line,Rl523.

FIG. 4. Comparison ofa2. Dashed line, theory; symbols with
error bar, DNS.
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2988 57TOSHIYUKI GOTOH
Vk;
C

12b
h2/3S k

kd
D 2d

@ ln~k/kI !#
12b, ~33!

L~k!;
C3/2

A12b
hS k

kd
D 23d/2

@ ln~k/kI !#
~123b!/2. ~34!

SinceL(k) is very weakly dependent on the wave numb
when d is small but finite, the ‘‘inertial range’’ referred to
previously should be understood as a quasi-inertial ran
The total enstrophyV is roughly approximated by putting
k5kd for Vk , so that for smalld, Rl is approximately

Rl;S C

12b D 3/2

@ ln~kd /kI !#
3~12b!/2. ~35!

The matching conditions for the functionF( x̃ ) in the case
of the energy spectrum Eq.~32! are given by

F~ x̃ !; x̃ dF lnS kd

kI x̃
D G2b

, ~36!

for large x̃ ~for details of calculation see the Appendix!, and

F~ x̃ !' x̃ 22
S2

32S C

12b D 1/2

@ ln~kd /kI !#
~12b!/2x̃41O~ x̃ 6!,

~37!

for small x̃ , whereRl
1/3 in Eq. ~11! is replaced by the ap

proximation Eq.~35! for the argument below. Then a smoo
functionF( x̃ ) satisfying the matching conditions is given b
the equation

F~ x̃ !5
x̃ 2

@11„ x̃ /b„ x̃ !…2] ~22d!/2
, ~38!

with a slowly varying functionb( x̃ ) instead of the constan
b; that is,

b2~ x̃ !5F lnS kd

kI x̃
D G2@2b/~22d!#

, for x̃@1,

'
16~22d!

S2
S C

12b D 21/2

@ ln~kd /kI !#
2~12b!/2

~39!

for x̃!1. ~40!

If we assume that Eq.~36! and Eq.~40! can be extrapolated
to x̃;1, respectively, and match each other, the expon
must satisfy the relation22b/(22d)52(12b)/2 for x̃
;1, so that we have

b5
22d

62d
. ~41!

Whend tends to zero,b approaches 1/3 andL(k) becomes
independent of the wave number. In fact, we observe in F
5 that the compensated spectra using Eqs.~32! and ~41! has
r

e.

nt

g.

a slightly wider plateau than the one by Eq.~14!. The con-
stantsC8 andC in the inertial range spectrum from the DN
are of the order of unity but increase slowly withRl ~see
Fig. 6!. The values ofC are consistent with the values o
2.626 by the test field model~TFM! @18# and 1.44 by the
LRA @30#. The functional form of the slopea2 by Eq.~22! is
unchanged. When the formula Eq.~32! is used, the values fo
d anda2 become smaller than those in Table I by about 10
and 5%, respectively.

For relatively larged;1, on the other hand,b51/5, a
smaller exponent of the logarithmic factor than 1/3, whi
means that the energy spectrum becomesE(k)
}k24@ ln(k/kI)#

21/5 and is consistent with the observation
the energy spectrum in the DNS at low to moderate R
nolds numbers.

V. SUMMARY AND DISCUSSION

We analyzed the energy spectrum using a Ka´rmán-
Howarth-type equation and compared it with the results
high resolution DNS. The analysis yielded the spectrum
the inertial-to-far dissipation ranges at large but finite Re
nolds numbers. It was shown that the inertial range ene
spectrum is of the form given by Eq.~32! and the exponen

FIG. 5. Comparison of the energy spectra by DNS.Rl567.
Solid line, h22/3k3(k/kd)2d@ ln(k/kI)#

2bE(k); dashed line,
h22/3k3(k/kd)2dE(k).

FIG. 6. Variation of the constantsC and C8 with Rl . Solid
line, C; dashed line,C8.
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57 2989ENERGY SPECTRUM IN THE INERTIAL AND . . .
b(d) of the correction@ ln(k/kI)#
2b(d) approaches 1/3 asd

vanishes, that is, Kraichnan’s spectrum, Eq.~1!, is recovered
for infinite Reynolds number. It was found from the DN
data thatd decreases asRl increases. The constantC of the
inertial range spectrum was also measured by the DNS
found to be of the order of unity and to increase with t
Reynolds number. In the dissipation range, the exponen
the prefactor in the spectrum is half that in the inertial ran
The exponential decay rate of the energy spectrum in
dissipation range is dependent onRl and d for finite Rey-
nolds numbers.

In the above discussion, no effects of forcing have be
taken into account. If they are included, a ter
2(2/r )*0

r r 8 F(r 8)dr8 is added to the right-hand side of E
~5!. When the spectrum support of the forcing centered onkI

is narrow as in our DNS, then this yields the contributio

2hkI
2 x̃4/4 and gives the slope a285a2„1

24(kI /kd)2/(S2Rl
1/3)…. Thus we conclude that the correctio

for the forcing with narrow spectrum support nearkI is neg-
ligible as long askI!kd .

Also not included in the analysis are the intermitten
effects of the vorticity field. If these effects were include
they would appear predominantly as fluctuations ofkd due to
the spatial variation ofh(x) @24#. Locally definedkd(x)
5@h(x)/n3#1/6 fluctuates in space so that regions having
large amplitude ofh(x) dominating the energy spectrum
the far dissipation range becauseE(k,x)}exp
$2a2@k/kd(x)#% and larger h(x) leads to smaller slope
a2„kd /kd(x)…,a2. This explains the smaller values of slop
observed in the DNS than in the curve given by theory. T
dependency of the skewnessS2 onRl exists but is weaker
than the effects of fluctuations inkd(x).

Let us consider the approximation in Eqs.~11!–~16!.
First, the Pade´ approximation in Eq.~11! is used to infer the
approximate position of the pole ofF( x̃ ) in the complexx̃
plane. In order to obtain a more precise position of the p
we could proceed to the higher order terms in the Tay
expansion ofQ31( x̃ ) such as the term ofO( x̃ 5). This would
require knowledge of the higher order correlations such
^dui(r)@dv(r)#4&, ^(]u1 /]x)(]v/]x)4&, and so on, which
means that we would have to take into account the hig
order correlations of vorticity and velocity fields. As the o
der of correction increased, the pole position would be c
rected and approach more precise position, which would l
to a precise estimate of the slope of the energy spectrum
the far dissipation range. However, the inclusion of t
higher order moments of vorticity and/or velocity is phys
cally equivalent to taking into account the effects of inte
mittency on the slope or the pole position ofF( x̃ ). We thus
estimate that the order of the error associated with the P´
approximation is roughly of the order of the distance b
tween the theoretical curve and the DNS values in Fig
Second, the essential feature of the approximate form
~16! is the exponent (22d)/2, which leads to the exponen
2(31d)/2 in the prefactor of the energy spectrum in t
dissipation range. From Fig. 3, we conclude that the ma
ing form Eq.~16! is well supported, although more compa
son at higher Reynolds numbers is necessary.

It is useful for understanding the universality of the e
nd
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-
.

q.

h-

-

ergy spectrum to consider the relations amongRl , RL , l d
51/kd , l andL51/kI . Using Eqs.~26!–~29!, we have

l

L
;RL

21/2,
l d

l
;Rl

21/2, ~42!

so that the ratiol d /L becomes

l d

L
;~RLRl!21/2. ~43!

The microscale Reynolds number is

Rl5
V3/2

h
5

nV

h

V1/2

n
;

l2

L2 RL;RL
0 , ~44!

which means thatRl is independent ofRL . We infer from
the DNS data that this would occur at very highRL . It is
natural to assume thath is finite in the limit of vanishingly
small viscosity, and the total enstrophy is conserved and
nite in the inviscid limit when forcing is absent. From the
two facts, it is quite reasonable to expect that the microsc
Reynolds numberRl approaches a nonzero finite value
the inviscid limit, although the limiting value is not known
If this statement is correct, the ratiol d /l becomes constan
and l d /L depends only onRL . That is,RL is the only domi-
nant control parameter in the limit of vanishingly small vi
cosity. In this sense, our values ofRL are large but not
enough to study the limit of constantRl .

For finiteRL , it is observed from the DNS that the expo
nent d in the inertial range decreases very slowly withRL
because it decays slowly withRl . In this sense the spectrum
in the inertial range is not universal. Similarly the expone
tial decay ratea2 in the far dissipation range also decreas
asRl

21/6, and thus it is not universal for finiteRL . However,
whenRL becomes infinite, we can expect thatd vanishes and
the spectrum in the inertial range tends to Eq.~1! which is
dependent only onkI . Also, a2 becomes independent o
Rl , so that we can consider that the energy spectrum in
far dissipation range tends to a universal form of exponen
decay with the algebraic prefatork23/2. Although it is diffi-
cult to increaseRL even for the high performance compute
it is desirable and interesting to study the spectrum in b
inertial and dissipation ranges at higher Reynolds numb
Also, it is challenging to study whether or not the limitin
value ofRl exists and is universal.
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APPENDIX

First we consider the one-dimensional enstrophy spect
W(k1), which is computed as

W1~k1!5E
k1

` k2E~k!

Ak22k1
2

dk. ~A1!
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Substituting Eq.~32! into this, we have

W1~k1!'Ch2/3kd
dE

k1

kd
k2d@ ln~k/kI !#

2b
dk

kAk22k1
2

'Ch2/3kd
dS E

k1

ek1
1E

ek1

kd D k2d@ ln~k/kI !#
2b

dk

kAk22k1
2

'Ch2/3kd
d~ I 11I 2!. ~A2!

The integralsI 1 and I 2 are approximately evaluated fo
k1@kI as follows:

I 15E
k1

ek1
k2d@ ln~k/kI !#

2b
dk

kAk22k1
2

'k1
2~11d!@ ln~k1 /kI !#

2bE
k1

ek1 dk

Ak22k1
2

'k1
2~11d!@ ln~k1 /kI !#

2blnUek1
21A~ek1!221

k1
21Ak1

221
U

;k1
2~11d!@ ln~k1 /kI !#

2b. ~A3!

In the integralI 2, the factor 1/Ak22k1
2 is approximated as

1/k in the range of integration overk, so that

I 25E
ek1

kd
k2d@ ln~k/kI !#

2b
dk

kAk22k1
2

'E
ek1

kd
k2~11d!@ ln~k/kI !#

2b
dk

k

'kI
2~11d!E

ln~ek1 /kI !

ln~kd /kI !

e2~11d!ss2bds

'
kI

2~11d!

11d H S ek1

kI
D 2~11d!

@ ln~ek1 /kI !#
2b2S kd

kI
D 2~11d!

3@ ln~kd /kI !#
2b2bE

ln~ek1 /kI !

ln~kd /kI !

e2~11d!ss2~11b!dsJ
;

e2~11d!

11d
k1

2~11d!@ ln~ek1 /kI !#
2b, ~A4!

to the leading order ink1 /kI@1, where integration by part
is used in the fourth line of Eq.~A4!. Substituting Eqs.~A3!
and ~A4! into Eq. ~A2!, we obtain the asymptotic form o
W1(k1) as

W1~k1!;CB~d!h2/3k1
21S k1

kd
D 2d

@ ln~k1 /kI !#
2b, ~A5!

where

B~d!511
e2~11d!

11d
. ~A6!

The functionF( x̃ ) is given by the Fourier transform
F~x!52h22/3Q2~x1!

58h22/3E
0

`

W1~k1!@12cos~k1x1!#dk1

;8CB~d!kd
dE

kI

kd
k1

2~11d!@ ln~k1 /kI !#
2b

3@12cos~k1x1!#dk1

;8CB~d!kd
dS E

kI

1/x1
1E

1/x1

kd D k1
2~11d!@ ln~k1 /kI !#

2b

3@12cos~k1x1!#dk1

;8CB~d!kd
d~J11J2!. ~A7!

The two integralsJ1 andJ2 are approximated as follows:

J15E
kI

1/x1
k1

2~11d!@ ln~k1 /kI !#
2b@12cos~k1x1!#dk1

'
x1

2

2 S E
kI

ekI
1E

ekI

1/x1D k1
22d@ ln~k1 /kI !#

2b
dk1

k1

'
x1

2

2 S kI
22dE

kI

ekI
@ ln~k1 /kI !#

2b
dk1

k1

1@ ln~k1* /kI !#
2bE

ekI

1/x1
k1

12ddk1D
;

1

2~22d!
x1

d@ ln~k1* /kI !#
2b,

ekI,k1* ,1/x1 , ~A8!

and

J25E
1/x1

kd
k1

2~11d!@ ln~k1 /kI !#
2b@12cos~k1x1!#dk1

'E
1/x1

kd
k1

2~11d!@ ln~k1 /kI !#
2bdk1

'@ ln~k1** /kI !#
2bE

1/x1

kd
k1

2~11d!dk1

'x1
d@ ln~k1** /kI !#

2b@12~kdx1!2d#/d,

1/x1,k1** ,kd . ~A9!

Since the function@ ln(k1 /kI)#
2b with b,1 is a very slowly

varing function ofk1 /kI , we can reasonably putk1* ;1/x1
;k1** in Eqs.~A8! and~A9!. When 1/x1 approacheskd , J2
becomes smaller thanJ1. Then we obtain the asymptoti
form of the functionF( x̃ ) as

F~ x̃ !;A~d! x̃ dF lnS kd

kI x̃
D G2b

, ~A10!

whereA(d) is given by

A~d!5
4CB~d!

22d
. ~A11!
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The total strain acting on the wave numberk is computed
as

Vk5E
kI

k

p2E~p!dp5Ch2/3E
kI

kS p

kd
D 2d

@ ln~p/kI !#
2b

dp

p

5Ch2/3S kd

kI
D 2d

db21E
0

d ln~k/kI !

e2tt2bdt
ev

, J
5Ch2/3S kd

kI
D 2d

db21g„12b,d ln~k/kI !…

;
C

12b
h2/3S k

kd
D 2d

@ ln~k/kI !#
12b, ~A12!

whereg(m,z) is the incompleteg function.
, J.
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